Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 1010038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310866

RESUMO

The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Toxoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasmose/parasitologia , Citoesqueleto/metabolismo , Divisão Celular
2.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682673

RESUMO

T. gondii is a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells. This process requires the assembly of several molecular complexes that, at the nascent pole, encompass structural and myosin motor elements. To characterize a recently identified basal pole marker named BCC7 with respect to the posterior myosin J and myosin C motors, we used conventional biochemistry as well as advanced proteomic and in silico analysis in conjunction with live and super resolution microscopy of transgenic fluorescent tachyzoites. We document that BCC7 forms a ribbed ring below which myosin C motor entities distribute regularly. In addition, we identified-among 13 BCC7 putative partners-two novel and five known members of the inner membrane complex (IMC) family which ends at the apical side of the ring. Therefore, BCC7 could assist the stabilization of the IMC plaques and contribute to the parasite biomechanical properties.


Assuntos
Toxoplasma , Divisão Celular , Miosinas/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
3.
Sci Rep ; 11(1): 972, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441661

RESUMO

Francisella tularensis is one of the most virulent pathogenic bacteria causing the acute human respiratory disease tularemia. While the mechanisms underlying F. tularensis pathogenesis are largely unknown, previous studies have shown that a F. novicida transposon mutant with insertions in a gene coding for a putative lysine decarboxylase was attenuated in mouse spleen, suggesting a possible role of its protein product as a virulence factor. Therefore, we set out to structurally and functionally characterize the F. novicida lysine decarboxylase, which we termed LdcF. Here, we investigate the genetic environment of ldcF as well as its evolutionary relationships with other basic AAT-fold amino acid decarboxylase superfamily members, known as key actors in bacterial adaptative stress response and polyamine biosynthesis. We determine the crystal structure of LdcF and compare it with the most thoroughly studied lysine decarboxylase, E. coli LdcI. We analyze the influence of ldcF deletion on bacterial growth under different stress conditions in dedicated growth media, as well as in infected macrophages, and demonstrate its involvement in oxidative stress resistance. Finally, our mass spectrometry-based quantitative proteomic analysis enables identification of 80 proteins with expression levels significantly affected by ldcF deletion, including several DNA repair proteins potentially involved in the diminished capacity of the F. novicida mutant to deal with oxidative stress. Taken together, we uncover an important role of LdcF in F. novicida survival in host cells through participation in oxidative stress response, thereby singling out this previously uncharacterized protein as a potential drug target.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Francisella tularensis/metabolismo , Estresse Oxidativo/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Reparo do DNA/fisiologia , Escherichia coli/metabolismo , Macrófagos/metabolismo , Camundongos , Proteômica/métodos , Alinhamento de Sequência , Tularemia/microbiologia , Virulência/fisiologia
4.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752076

RESUMO

Responsible for tularemia, Francisella tularensis bacteria are highly infectious Gram-negative, category A bioterrorism agents. The molecular mechanisms for their virulence and resistance to antibiotics remain largely unknown. FupA (Fer Utilization Protein), a protein mediating high-affinity transport of ferrous iron across the outer membrane, is associated with both. Recent studies demonstrated that fupA deletion contributed to lower F. tularensis susceptibility towards fluoroquinolones, by increasing the production of outer membrane vesicles. Although the paralogous FupB protein lacks such activity, iron transport capacity and a role in membrane stability were reported for the FupA/B chimera, a protein found in some F. tularensis strains, including the live vaccine strain (LVS). To investigate the mode of action of these proteins, we purified recombinant FupA, FupB and FupA/B proteins expressed in Escherichia coli and incorporated them into mixed lipid bilayers. We examined the porin-forming activity of the FupA/B proteoliposomes using a fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt (ANTS) probe. Using electrophysiology on tethered bilayer lipid membranes, we confirmed that the FupA/B fusion protein exhibits pore-forming activity with large ionic conductance, a property shared with both FupA and FupB. This demonstration opens up new avenues for identifying functional genes, and novel therapeutic strategies against F. tularensis infections.


Assuntos
Francisella tularensis/genética , Ferro/metabolismo , Porinas/genética , Tularemia/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas , Transporte Biológico/genética , Transporte Biológico/imunologia , Armas Biológicas , Escherichia coli/genética , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/uso terapêutico , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidade , Humanos , Porinas/metabolismo , Tularemia/tratamento farmacológico , Tularemia/microbiologia
5.
ACS Nano ; 14(6): 7121-7139, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32432851

RESUMO

Among the eukaryotic cells that navigate through fully developed metazoan tissues, protozoans from the Apicomplexa phylum have evolved motile developmental stages that move much faster than the fastest crawling cells owing to a peculiar substrate-dependent type of motility, known as gliding. Best-studied models are the Plasmodium sporozoite and the Toxoplasma tachyzoite polarized cells for which motility is vital to achieve their developmental programs in the metazoan hosts. The gliding machinery is shared between the two parasites and is largely characterized. Localized beneath the cell surface, it includes actin filaments, unconventional myosin motors housed within a multimember glideosome unit, and apically secreted transmembrane adhesins. In contrast, less is known about the force mechanisms powering cell movement. Pioneered biophysical studies on the sporozoite and phenotypic analysis of tachyzoite actin-related mutants have added complexity to the general view that force production for parasite forward movement directly results from the myosin-driven rearward motion of the actin-coupled adhesion sites. Here, we have interrogated how forces and substrate adhesion-de-adhesion cycles operate and coordinate to allow the typical left-handed helical gliding mode of the tachyzoite. By combining quantitative traction force and reflection interference microscopy with micropatterning and expansion microscopy, we unveil at the millisecond and nanometer scales the integration of a critical apical anchoring adhesion with specific traction and spring-like forces. We propose that the acto-myoA motor directs the traction force which allows transient energy storage by the microtubule cytoskeleton and therefore sets the thrust force required for T. gondii tachyzoite vital helical gliding capacity.


Assuntos
Parasitos , Toxoplasma , Actinas , Animais , Proteínas de Protozoários , Torque , Tração
6.
PLoS One ; 15(2): e0228591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32023304

RESUMO

Biofilms are currently considered as a predominant lifestyle of many bacteria in nature. While they promote survival of microbes, biofilms also potentially increase the threats to animal and public health in case of pathogenic species. They not only facilitate bacteria transmission and persistence, but also promote spreading of antibiotic resistance leading to chronic infections. In the case of Francisella tularensis, the causative agent of tularemia, biofilms have remained largely enigmatic. Here, applying live and static confocal microscopy, we report growth and ultrastructural organization of the biofilms formed in vitro by these microorganisms over the early transition from coccobacillary into coccoid shape during biofilm assembly. Using selective dispersing agents, we provided evidence for extracellular DNA (eDNA) being a major and conserved structural component of mature biofilms formed by both F. subsp. novicida and a human clinical isolate of F. philomiragia. We also observed a higher physical robustness of F. novicida biofilm as compared to F. philomiragia one, a feature likely promoted by specific polysaccharides. Further, F. novicida biofilms resisted significantly better to ciprofloxacin than their planktonic counterparts. Importantly, when grown in biofilms, both Francisella species survived longer in cold water as compared to free-living bacteria, a trait possibly associated with a gain in fitness in the natural aquatic environment. Overall, this study provides information on survival of Francisella when embedded with biofilms that should improve both the future management of biofilm-related infections and the design of effective strategies to tackle down the problematic issue of bacteria persistence in aquatic ecosystems.


Assuntos
Biofilmes , Farmacorresistência Bacteriana , Francisella/fisiologia , Água Doce/microbiologia , Adaptação Fisiológica , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Sequência Conservada , DNA Bacteriano/química , Francisella/efeitos dos fármacos , Francisella/genética , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos
7.
Emerg Microbes Infect ; 8(1): 808-822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164053

RESUMO

Francisella tularensis is the causative agent in tularemia for which the high prevalence of treatment failure and relapse is a major concern. Directed-evolution experiments revealed that acquisition of fluoroquinolone (FQ) resistance was linked to factors in addition to mutations in DNA gyrase. Here, using F. tularensis live vaccine strain (LVS) as a model, we demonstrated that FupA/B (Fer-Utilization Protein) expression is linked to FQ susceptibility, and that the virulent strain F. tularensis subsp. tularensis SCHU S4 deleted for the homologous FupA protein exhibited even higher FQ resistance. In addition to an increased FQ minimal inhibitory concentration, LVSΔfupA/B displayed tolerance toward bactericidal compounds including ciprofloxacin and gentamicin. Interestingly, the FupA/B deletion was found to promote increased secretion of outer membrane vesicles (OMVs). Mass spectrometry-based quantitative proteomic characterization of vesicles from LVS and LVS∆fupA/B identified 801 proteins, including a subset of 23 proteins exhibiting differential abundance between both strains which may therefore contribute to the reduced antibiotic susceptibility of the FupA/B-deleted strain. We also demonstrated that OMVs are key structural elements of LVSΔfupA/B biofilms providing protection against FQ. These results provide a new basis for understanding and tackling antibiotic resistance and/or persistence of Francisella and other pathogenic members of the Thiotrichales class.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes , Vesículas Extracelulares/metabolismo , Fluoroquinolonas/farmacologia , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana , Vesículas Extracelulares/genética , Francisella tularensis/fisiologia , Deleção de Genes , Testes de Sensibilidade Microbiana , Mutação
8.
Artigo em Inglês | MEDLINE | ID: mdl-28167561

RESUMO

Fluoroquinolone (FQ) resistance is a major health concern in the treatment of tularemia. Because DNA gyrase has been described as the main target of these compounds, our aim was to clarify the contributions of both GyrA and GyrB mutations found in Francisella novicida clones highly resistant to FQs. Wild-type and mutated GyrA and GyrB subunits were overexpressed so that the in vitro FQ sensitivity of functional reconstituted complexes could be evaluated. The data obtained were compared to the MICs of FQs against bacterial clones harboring the same mutations and were further validated through complementation experiments and structural modeling. Whole-genome sequencing of highly FQ-resistant lineages was also done. Supercoiling and DNA cleavage assays demonstrated that GyrA D87 is a hot spot FQ resistance target in F. novicida and pointed out the role of the GyrA P43H substitution in resistance acquisition. An unusual feature of FQ resistance acquisition in F. novicida is that the first-step mutation occurs in GyrB, with direct or indirect consequences for FQ sensitivity. Insertion of P466 into GyrB leads to a 50% inhibitory concentration (IC50) comparable to that observed for a mutant gyrase carrying the GyrA D87Y substitution, while the D487E-ΔK488 mutation, while not active on its own, contributes to the high level of resistance that occurs following acquisition of the GyrA D87G substitution in double GyrA/GyrB mutants. The involvement of other putative targets is discussed, including that of a ParE mutation that was found to arise in the very late stage of antibiotic exposure. This study provides the first characterization of the molecular mechanisms responsible for FQ resistance in Francisella.


Assuntos
DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Francisella/genética , Genoma Bacteriano , Mutação , Motivos de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Clonagem Molecular , DNA Girase/química , DNA Girase/metabolismo , DNA Topoisomerase IV/química , DNA Topoisomerase IV/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Francisella/efeitos dos fármacos , Francisella/enzimologia , Francisella/crescimento & desenvolvimento , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
PLoS Pathog ; 12(7): e1005721, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399201

RESUMO

Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae.


Assuntos
Produtos do Gene env/ultraestrutura , Glicoproteínas/ultraestrutura , Spumavirus/ultraestrutura , Western Blotting , Linhagem Celular , Microscopia Crioeletrônica , Humanos , Processamento de Imagem Assistida por Computador , Conformação Proteica , Spumavirus/química , Transfecção
10.
Nat Commun ; 6: 8781, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26632262

RESUMO

The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Sulfolobaceae/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica em Archaea/fisiologia , HIV-1/fisiologia , Modelos Moleculares , Mutação , Conformação Proteica , Sulfolobaceae/genética
11.
Curr HIV Res ; 10(4): 298-306, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22524178

RESUMO

HIV-1 employs its structural proteins to orchestrate assembly and budding at the plasma membrane of host cells, which depends on numerous cellular factors. Although cells evolved interferon inducible restriction factors such as tetherin that act as a first line of defense, enveloped viruses, including HIV-1, developed countermeasures in the form of tetherin antagonists such as Vpu that decrease the effect of tetherin and permits normal viral replication in vivo. Here we review recent advances in the understanding of the dynamic structural properties of tetherin that provide the basis to physically retain HIV-1 by bridging plasma and virion membranes after completion of budding.


Assuntos
Antígenos CD/genética , HIV-1/imunologia , Mutação , Proteínas Virais Reguladoras e Acessórias/metabolismo , Antígenos CD/ultraestrutura , Linhagem Celular , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/ultraestrutura , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Masculino , Replicação Viral
12.
Virologie (Montrouge) ; 16(1): 32-42, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065886

RESUMO

Tetherin is an unusual surface glycoprotein that employs an N-terminal and a C-terminal region to anchor the protein into membranes. Structural analyses revealed an elongated structure for the ectodomain that is probably oriented parallel to cellular membranes. Expression of tetherin can be induced by interferon in selected cell types, which leads to the restriction of HIV-1 replication in the absence of the viral antagonist Vpu. This review focuses on recent progress on the understanding of the molecular mechanisms of tetherin function during HIV and other enveloped virus budding processes. We discuss the role of diverse viral antagonists in tetherin down regulation and place the structural information on the ectodomain into the context of tetherin's ability to physically link virions such as HIV-1 to the plasma membrane after completion of budding.

13.
PLoS One ; 6(7): e21921, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21760923

RESUMO

BACKGROUND: The phylum Crenarchaeota lacks the FtsZ cell division hallmark of bacteria and employs instead Cdv proteins. While CdvB and CdvC are homologues of the eukaryotic ESCRT-III and Vps4 proteins, implicated in membrane fission processes during multivesicular body biogenesis, cytokinesis and budding of some enveloped viruses, little is known about the structure and function of CdvA. Here, we report the biochemical and biophysical characterization of the three Cdv proteins from the hyperthermophilic archaeon Metallospherae sedula. METHODOLOGY/PRINCIPAL FINDINGS: Using sucrose density gradient ultracentrifugation and negative staining electron microscopy, we evidenced for the first time that CdvA forms polymers in association with DNA, similar to known bacterial DNA partitioning proteins. We also observed that, in contrast to full-lengh CdvB that was purified as a monodisperse protein, the C-terminally deleted CdvB construct forms filamentous polymers, a phenomenon previously observed with eukaryotic ESCRT-III proteins. Based on size exclusion chromatography data combined with detection by multi-angle laser light scattering analysis, we demonstrated that CdvC assembles, in a nucleotide-independent way, as homopolymers resembling dodecamers and endowed with ATPase activity in vitro. The interactions between these putative cell division partners were further explored. Thus, besides confirming the previous observations that CdvB interacts with both CdvA and CdvC, our data demonstrate that CdvA/CdvB and CdvC/CdvB interactions are not mutually exclusive. CONCLUSIONS/SIGNIFICANCE: Our data reinforce the concept that Cdv proteins are closely related to the eukaryotic ESCRT-III counterparts and suggest that the organization of the ESCRT-III machinery at the Crenarchaeal cell division septum is organized by CdvA an ancient cytoskeleton protein that might help to coordinate genome segregation.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA Arqueal/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Sulfolobaceae/metabolismo , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/ultraestrutura , DNA Arqueal/ultraestrutura , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
14.
Microb Pathog ; 50(5): 233-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21288480

RESUMO

BACKGROUND: Rickettsia prowazekii is the etiological agent of epidemic typhus and is an obligate intracellular bacterium that grows as a parasite freely within the cytoplasm of a eukaryotic host cell. Previous studies have shown that rOmpA and rOmpB which belong to the family of rickettsial cell surface antigens are involved in vitro in the adhesion of Rickettsiae to epithelial cells. Recently, two putative rickettsial adhesins have been identified using high resolution 2D-PAGE coupled with mass spectrometry. In this study, we further characterize and describe the adhesin Adr2 from R. prowazekii. METHODOLOGY/PRINCIPAL FINDINGS: Using an overlay assay coupled with mass spectrometry two adhesins, Adr1 (RP827) and Adr2 (RP828), were identified from the R. prowazekii proteome Recombinant R. prowazekii Adr2 was expressed through fusion with Dsbc in Escherichia coli, purified and concentrated, thus allowing production of specific monoclonal antibodies, as confirmed by western blot assays. Finally, inhibition of rickettsiae-induced cytotoxicity with monoclonal anti-Adr2 antibody has showed a greatest impact on bacterial cell entry at 8 h post-infection (ca50%) and then decreased progressively to attempt 18% of inhibition at day 7. These, correlated to the inhibition of rickettsiae-induced cytotoxicity with monoclonal anti-rOmpB antibody. Thus, Adr2 is sufficient to mediate R. prowazekii entry into the cell at early stage of mammalian cell infection. CONCLUSIONS: Our results suggest that R. prowazekii Adr2 could be the main actor promoting the entry of rickettsiae into the host cells. The present study opens the framework for future investigations for better understanding of the Adr2 -mediated mechanisms involved in adhesion/invasion or intracellular survival of R. prowazekii.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Fibroblastos/microbiologia , Rickettsia prowazekii/genética , Rickettsia prowazekii/patogenicidade , Adesinas Bacterianas/isolamento & purificação , Animais , Anticorpos Antibacterianos/imunologia , Células Cultivadas , Clonagem Molecular , Eletroforese em Gel Bidimensional , Escherichia coli/genética , Expressão Gênica , Espectrometria de Massas , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
15.
Cell Host Microbe ; 7(4): 314-323, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20399176

RESUMO

The restriction factor BST-2/tetherin contains two membrane anchors employed to retain some enveloped viruses, including HIV-1 tethered to the plasma membrane in the absence of virus-encoded antagonists. The 2.77 A crystal structure of the BST-2/tetherin extracellular core presented here reveals a parallel 90 A long disulfide-linked coiled-coil domain, while the complete extracellular domain forms an extended 170 A long rod-like structure based on small-angle X-ray scattering data. Mutagenesis analyses indicate that both the coiled coil and the N-terminal region are required for retention of HIV-1, suggesting that the elongated structure can function as a molecular ruler to bridge long distances. The structure reveals substantial irregularities and instabilities throughout the coiled coil, which contribute to its low stability in the absence of disulfide bonds. We propose that the irregular coiled coil provides conformational flexibility, ensuring that BST-2/tetherin anchoring both in the plasma membrane and in the newly formed virus membrane is maintained during virus budding.


Assuntos
Antígenos CD/química , Membrana Celular/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/química , Liberação de Vírus , Animais , Antígenos CD/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Proteínas Ligadas por GPI , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo
16.
Ann N Y Acad Sci ; 1166: 94-105, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19538268

RESUMO

One century after the first description of rickettsiae as human pathogens, the rickettsiosis remained poorly understood diseases. These microorganisms are indeed characterized by a strictly intracellular location which has, for long, prohibited their detailed study. Within the last ten years, the completion of the genome sequences of several strains allowed gaining a better knowledge about the molecular mechanisms involved in rickettsia pathogenicity. Here, we summarized available data concerning the critical steps of rickettsia-host cell interactions that should contribute to tissue injury and diseases, that is, adhesion, phagosomal escape, motility, and intracellular survival of the bacteria.


Assuntos
Infecções por Rickettsia/fisiopatologia , Rickettsia/patogenicidade , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Movimento Celular/fisiologia , Humanos , Ligantes , Fagocitose/fisiologia , Fagossomos/microbiologia , Rickettsia/genética , Rickettsia/metabolismo , Infecções por Rickettsia/transmissão , Fatores de Virulência/metabolismo
17.
BMC Genomics ; 10: 166, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19379498

RESUMO

BACKGROUND: The Rickettsia genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent R. prowazekii, which causes epidemic typhus and kills its arthropod host, to the mild pathogen R. africae, the agent of African tick-bite fever, which does not affect the fitness of its tick vector. RESULTS: We evaluated the clonality of R. africae in 70 patients and 155 ticks, and determined its genome sequence, which comprises a circular chromosome of 1,278,540 bp including a tra operon and an unstable 12,377-bp plasmid. To study the genetic characteristics associated with virulence, we compared this species to R. prowazekii, R. rickettsii and R. conorii. R. africae and R. prowazekii have, respectively, the less and most decayed genomes. Eighteen genes are present only in R. africae including one with a putative protease domain upregulated at 37 degrees C. CONCLUSION: Based on these data, we speculate that a loss of regulatory genes causes an increase of virulence of rickettsial species in ticks and mammals. We also speculate that in Rickettsia species virulence is mostly associated with gene loss.The genome sequence was deposited in GenBank under accession number [GenBank: NZ_AAUY01000001].


Assuntos
Genoma Bacteriano , Filogenia , Rickettsia/genética , Animais , DNA Bacteriano/genética , Feminino , Humanos , Masculino , Família Multigênica , Plasmídeos , Rickettsia/classificação , Rickettsia/patogenicidade , Análise de Sequência de DNA , Especificidade da Espécie , Carrapatos/microbiologia , Transcrição Gênica , Virulência
18.
J Infect Dis ; 199(7): 1043-52, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19222368

RESUMO

BACKGROUND: Tropheryma whipplei is a bacterium commonly found in people with Whipple's disease, a rare systemic chronic infection. In the present study, we hypothesized that bacterium glycosylation may impair the immune response. METHODS: Bacterial extracts were analyzed by glycostaining, and reactive proteins, identified by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectometry, were purified to generate antibodies that could be used in immunofluorescence studies. The reactivity of serum samples obtained from patients and asymptomatic carriers was tested against native or deglycosylated bacteria, for which the fate in macrophages was also investigated. RESULTS: To our knowledge, we evidenced, for the first time in T. whipplei, a 110-kDa glycoprotein containing sialic acid. This protein, identified as an Wnt1-inducible signaling pathway (WiSP) protein, is associated with periodic acid-Schiff (PAS) staining in infected intramacrophage biofilm. Consistent with the lack of enzymes required for the glycosylation pathway in this bacterium, the glycoproteins disappear during in vitro axenic subcultures, whereas human transcriptome analysis reveals the up-regulation of corresponding genes within infected macrophages. Proteic antigens are not recognized by the serum samples obtained from patients compared with those obtained from nonsick carriers, and T. whipplei that exhibits a low glycosylation profile does not efficiently multiply in macrophages in vitro. CONCLUSIONS: T. whipplei glycosylation is likely to impair antibody-mediated immune recognition in patients. Such an intracellular antigen masking system in bacteria has not previously been described.


Assuntos
Tropheryma/metabolismo , Doença de Whipple/microbiologia , Biofilmes , Metabolismo dos Carboidratos , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Processamento de Proteína Pós-Traducional , Doença de Whipple/imunologia
19.
PLoS One ; 3(11): e3681, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18997861

RESUMO

BACKGROUND: Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211) of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. CONCLUSION/SIGNIFICANCE: Because eschar is a site for rickettsial introduction, the pattern of rickettsial gene expression observed here may define how rickettsiae counteract the host defense.


Assuntos
Febre Botonosa/microbiologia , Rickettsia conorii/genética , Adulto , Idoso , Animais , Chlorocebus aethiops , Feminino , Genoma Bacteriano , Humanos , Masculino , Pessoa de Meia-Idade , Rhipicephalus sanguineus/genética , Infecções por Rickettsia/genética , Rickettsia conorii/patogenicidade , Transcrição Gênica , Células Vero
20.
PLoS One ; 3(7): e2582, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18612416

RESUMO

BACKGROUND: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG). The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. METHODOLOGY/PRINCIPAL FINDINGS: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading) of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. CONCLUSION/SIGNIFICANCE: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Rickettsia/metabolismo , Linhagem Celular , Movimento Celular , Sequência Conservada , Microscopia Eletrônica de Transmissão , Filogenia , Rickettsia/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...